A unique quadruped robot conquering harsh environments

Mobile machines have always had the potential to support humans in dangerous industrial situations, but only recent advancements in robotics have given them the capacity to do so. The physical layout of industrial sites, comprising of stairs, gaps and other obstacles, adds a layer of complexity, preventing the use of traditionally wheeled or tracked robots. While drones can overcome some of these problems, they cannot operate in bad weather and their payload capacity and energy autonomy can be limiting.

The ANYbotics team has developed an exciting new solution to this problem: ANYmal. It is a highly sophisticated four-legged robot, designed to tackle the challenges of a harsh industrial environment head-on. Ressembling a medium-sized dog and weighing in at 30 kg, it teams high-end computer systems with robust hardware. Built specifically to work autonomously in difficult surroundings, it is equipped with sensory systems to perform search and rescue operations, inspections, and other surveillance duties.

A quadruped design offers the best advantage in terms of mobility and versatility, but their legs cannot be powered by a classical mechanically geared system, as employed by almost all wheeled vehicles. This type of actuator is a component of a machine responsible for moving and controlling a mechanism or load. While it can only produce slow and static locomotion (i.e., always balanced) to reduce impulsive forces, which occur when two bodies collide, such as when a leg contacts the floor.

The robotic research community put forward several solutions to get around this problem. One promising approach are Series Elastic Actuators (SEAs). The design of these compliant actuators is inspired by nature; tendons and muscles working together to control force. SEAs can be described as actuators attached to the load via a spring or elastic element. This clever set up allows a force to be controlled precisely, as the spring expands or contracts it supplies information about the force applied. In addition, the spring absorbs impact, having the effect of increasing shock tolerance. It can also store energy temporarily during locomotion, increasing energy efficiency and peak power.

ANYDRIVE – A POWERFUL, TORQUE-CONTROLLABLE ROBOT JOINT

The ANYbotics team have developed with ANYdrive their own SEA unit, a compact, tightly integrated and sealed actuator module containing custom control electronics. ANYdrive can regulate the joint torque, position and impedance directly, without the need for any additional components. Using ANYdrive as a base, a robot will be simple to manufacture, assemble and maintain. In case of failure, an ANYdrive joint can be exchanged quickly and easily.

ANYdrive units make ANYmal unique. Each leg has three of these joint units, allowing a wide range of movement: hip abduction/adduction, hip flexion and knee flexion/extension. They allow ANYmal to walk, trot and jump, as well as walk and crawl up stairs. These joints can be fully rotated, allowing the legs to turn overhead to prevent collision with the ground or side rails, as well as get up after a fall.

ANYBOTICS EMERGES FROM RESEARCH

ANYmal’s ground-breaking technology began in the legged robotics group at the Autonomous Systems Lab, ETH Zurich and further in their Robotic Systems Lab. Nine years of extensive research went into the development of ANYmal and its component products. The ARGOS (Autonomous Robots for Gas and Oil) challenge, organised by the French Oil & Gas group Total, provided the first platform to demonstrate ANYmal’s capability of navigating and moving dynamically in very challenging terrain. Numerous advanced autonomous surveillance and intervention tasks were completed safely on a replica of a multi-floor industrial oil and gas platform in a potentially hazardous offshore environment.

Built specifically to work autonomously in difficult surroundings, ANYmal is equipped with sensory systems to perform search and rescue operations, inspections, and other surveillance duties.

ANYMAL – A UNIQUE QUAKEPEDAL ROBOT

ANYmal was developed to support human in dirty, dangerous and dull work.

ANYmal was safe to handle and easy to maintain and robustness while ensuring the robot was safe to handle and easy to maintain by a single operator.

ANYbotics members include the Toyota Research Institute, the ANYmal robot. Members include the

ANYdrive powers the ANYmal as a fully integrated, robust, and torque-controllable robot joint.
Legged robots, such as the ANYmal, will be part of our daily lives in ten years.

ANYmal is designed for harsh environments and is fully water- and dust-proof.

REAL-WORLD CAPABILITIES

ANYmal has a proven capability of working in harsh environments with the potential for use in a wide range of applications. It can operate in rough outdoor locations, crawl through pipes, and access buildings over steps and stairs, making it perfect for use on industrial platforms, in mines, construction sites, or patrolling remote locations.

ANYmal's use in the industrial sector will not only increase efficiency and reduce operational costs, but it will also reduce the risk to personnel, installations and the environment. In addition to this, ANYmal can support disaster relief teams with safer search and rescue operations, as well as other activities that may involve human interaction.

ANYmal is also used in the entertainment industry – museums, amusement parks and theatre productions. While it amazes children and adults alike, it can also be used to educate its most important function.

References


www.anybotics.com
www.anymal-research.org

Where do you see ANYmal in ten years’ time?

Legged robots, such as the ANYmal, will be part of our daily lives in ten years. Less in directly visible applications, but more in underground, remote and potentially dangerous industrial locations. The robots will work alongside humans to perform maintenance relevant tasks such as inspection and repairs to ensure safe and efficient operation of facilities. One day, the robots might even build complex installations themselves.